Symbolic Execution and Model
Checking for Testing

Corina S. Pasireanu! and Willem Visser?

! Perot, Systems Government Services/NASA Ames Research Center
Moffett Field, CA 94035, USA
Corina.S.Pasareanu@nasa.gov

* SEVEN Networks
Redwood City, CA 94063, USA
willem@gmail.com

Techniques for checking complex software range from model checking and
static analysis to testing. We aim to use the power of exhaustive techniques,
such as model checking and symbolic execution, to enable thorough testing of
complex software. In particular, we have extended the Java PathFinder model
checking tool (JPF) [3] with a symbolic execution capability [4,2] to enable
test case generation for Java programs. Our techniques handle complex data
structures, arrays, as well as multithreading, and generate optimized test suites
that satisfy user-specified testing coverage criteria.

Programs are executed on symbolic, rather than concrete, inputs; the vari-
able values are represented as expressions and constraints that reflect the code
structure. JPF generates and analyzes different symbolic execution paths. The
input constraints for one path are solved (using off-the-shelf constraint solvers)
to generate tests that are guaranteed to execute that path. To bound the search
space we put a limit on the model checking search depth, or on the number of
constraints along one path. Alternatively, we use abstract state matching [1],
which enables JPF to analyze an under-approximation of the program behavior.

Our techniques have been used in black box and white box fashion [5]. They
have been applied to generate test sequences for object-oriented code [6] and
test vectors for NASA software. Recently, we have also applied our techniques
to (executable) models — using a JPF extension for UML Statecharts.

References

1. S. Anand, C. S. Pasareanu, and W. Visser. Symbolic execution with abstract sub-
sumption checking. In Proc. SPIN, 2006.

2. S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE: A symbolic execution extension
to Java PathFinder. In Proc. TACAS, 2007.

3. Java PathFinder. http://javapathfinder.sourceforge.net.

4. S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for
model checking and testing. In Proc. TACAS, 2003.

5. W. Visser, C. Pasareanu, and S. Khurshid. Test input generation with Java
PathFinder. In Proc. ISSTA, 2004.

6. W. Visser, C. Pasareanu, and R. Peldnek. Test input generation for Java containers
using state matching. In Proc. ISSTA, 2006.



